COMPTEMENTAL # Relative Advantages of Paper Tape Versus Punch Cards #### I. PURPOSE: This paper compares the relative advantages of paper tape versus punch cards to preduce a machine language by-product during a normal typing operation. #### II. DISCUSSION: The specific application of concern here involves the production of the 3 x 5 cards now being typed in SRD for insertion in the Office of Security indices. The best paper tape producing equipment is manufactured by Friden, Incorporated, and is known as flexowriter. The best punch card equipment available today is manufactured by IBM and is known as the typewriter card punch Model 326. The criteria for determining what type of subjects or references should be carded are not material in this situation. What is material is the format and content of the card. In order to determine the relative advantages of the two systems, the following basic comparisons should be considered: ## 1. Unit Record Longth If the unit record length is above 80 characters, the punched card system will require the use of trailer cards. This is not particularly troublesome if the above 80 character unit records are a relatively minor portion of the total number. However, this becomes a more time consuming operation if there is a substantial number of these trailer cards. Funched paper tape is continuous and allows unit records of indefinite length. It has been determined that the desired unit record length will be less than 80 characters in all but a very small percentage of the cases. See Tab A. ## 2. Use of the Machine Language By-product If the data so developed is to be stored and merely "dusped" into a computer eventually, either system could be used. However, if it is desired to utilize the developed data in the #### COMPIDENTIAL #### COMPTRACTIAL reporting and/or control systems, punch cards would have to be used. In the present study, it has been shearved that punch cards could be usefully employed in both the reporting and control systems. ## 3. Machine Delivery Time Both flaxowriter and IBM typewriter peach card machines require approximately four months delivery time. Flaxowriters must be endered by specific model and include modification specifications. IBM typewriter punch card machines are standardized and, therefore, can be ordered by merely model manbers. Since the Office of Security has an IBM representative essigned to it from the ADP Staff, it was possible to informally back order IBM Model 826 machines in May upon the contingency that these machines may be the ones desired. This means that delivery can be obtained in September 1962. ## 4. The Method of Computer Storage The two most logical computer storage methods available are either magnetic tape or random access central storage memory. If magnetic tape is used, it will be necessary to have the accusalated data sorted alphabetically either on BAN equipment (by means of punch eards) or by the use of higher cost (approximately \$200 an hour) computer time, since the subsequent searching operations will have to be conducted in an alphabetical serialized fashion. If, however, random access storage is utilized, the information can be inserted in the computer in a random fashiom as far as the alphabetical sequence is concerned. The dominating factors in deciding which storage method will be used will be first, the cost of the two methods and, second, the total storage requirements of the complete system. In relatively small storage systems (100,000,000 characters or less) the random access type is more desirable and is not significantly more expensive than the use of magnetic tape. In large storage systems (100,000,000 characters or ever) the cost tends to favor the use of magnetic tape with serial access techniques. In addition, the state of the art is now limited to about 200,000,000 characters for a system of random access type storage. Assuming an average unit record length of approximately 60 characters, the present indices system alone would contain 90,000,000 characters which raises the question of the feasibility of a random access system. This is particularly true in view of the other requirement of the Office of Security, #### COMPIDENTIAL as well as program requirements which will require millions of additional characters. If there is a good chance that serial access may be necessary because of the need for a large number of characters, the punch card system would be favored because the information can be correlated alphabetically through relatively simple BAM methods. If, on the other hand, the system is clearly going into a random access memory, then the difference between punch paper tape or punch cards would be minimal. It is concluded that there is a reasonable possibility that the data may go into magnetic tape storage which will require the serial access method. # 5. The Choice and Cost of Computer Equipment At the present time the Office of Security, as part of DD/S, has available to it the RCA 501/IBM 1401 combination. use or INO Duopper This system will accept punched paper tape directly into the RCA computer or punched cards into the 1401 peripheral computer. The RCA 501 is presently overloaded with work and the 1401 (which will be installed sometime in late 1962) is now being programmed for certain DD/S applications. At this stage of the DD/S ADF planning, it is impossible to predict (1) the availability of this equipment, or (2) the advisability of having a separate computer for the Office of Security. In any event, however, the final decision as to what computer equipment will be used will have to be made on the basis of the total needs of the Office of Security and the other DD/S elements. Bince no firm prediction can be made in this area at this time, this factor will have to be left unresolved. # 6. The Choice and Cost of HAM Equipment The cost of the actual typing-punch equipment to produce the machine language by-product, is known. It is estimated that it will take three machines in SED to produce new indices cards now being typed and one machine in the typist peol for the consolidation program. If the machines are purchased, each IEM machine would cost approximately \$5,000 plus \$200 a year maintenance, and each flexowriter would cost approximately \$3,000 plus \$200 a year maintenance. On a rental basis the IBM equipment would cost \$120 a month in contrast to the flexowriter which would cost approximately \$200 a month. Thus, if punch card equipment is desired, rental is indicated. If punch paper tops equipment is desired, purchase is indicated. - 3 - Approved For Release 2000/05/31 : CIA-RDP83B0(23R000100060011-9 #### COMPIDMENTAL #### 7. Verification At the present time the operators producing the 3 x 5 machine have been using eight verification. With the production of machine language by-product, the possibility of machine verification presents itself. Statistics generated ever a long period of time have indicated that normal two person sight verification revely exceeds 9% accuracy. This means we may expect a 5% or higher typing error in the index cards under the present system. This error rate, of course, can be influenced by the degree of care taken in the sight verification techniques. Many studies have also shown that with machine verification there is significantly less than 1% error. Machine verification would include only the name and file number. This can be accomplished by the ISM Model 826. ## 8. The Form of the Printing in the Machine Output This will very depending upon the system used. Only all capitals will be available in the punch card system. The flaxowriter provides both upper and lower case letters. ## 9. The Element of Storage of the Cards or Tape Depending upon the average unit record length of the punch cards, the actual storage volume used by the punch paper tape versus punch cards can be as high as 10 to 1 in favor of the punch paper tape. In any event, however, the total volume involved here is something that can be placed in one part of a small room even if the punch cards were used. This does not appear to be a significant factor since space is available at the Records Center. ## 10. Typing Error Correction On a flexouritar this is accomplished by normal backspacing and cancelling of the letters by depressing the error key. These positions on the tape then represent plain tape feed through code which means is effect nothing to the retyping or transfer to storage operation. An error made on a punch card requires the removal of the punch card from the machine and the retyping of a new punch card. If an error is made near the end of the unit record which is producing a punch card, the operator must retype practically a whole new card. Therefore, in an average unit record length of 60 characters, the average retyping upon making an error is 30 characters. - 4 - #### COMPIDENTIAL #### COMPIDENTIAL #### 11. Speed and Accuracy of Typing This applies equally well to either system since in either case the same standard keyboards are used. ## 12. Training of Operators This factor applies equally to either system, but it must be considered in sufficient time to have the operators trained for the equipment to be ordered. The training period for the typical typist is a matter of a few days. #### 13. Later Conversion and Referenting Techniques To be able to put the machine data into a computer memory, it will be necessary to provide certain codes and formats before the raw data can be "dumped" into the computer. The method and extent of desired retrievability of the various elements of the unit record will determine the complexity of the programming involved into getting information into the computer. If the program is properly planned, this problem will not affect the favoring of one system over the other. ## 14. Speed of the Input to the Computer This is a relatively minor factor. However, the input speed of cards is somewhat higher than that for punch paper
tape. This would mean in the initial "dump" as well as subsequent operations, somewhat less computer time will be necessary if punch cards are used. -5 - DIGITAL EOUIPMENT Digital Equipment Corporation Main Street Maynard, Massachusetts PDP-1 CPYRGHT GENERAL ELECTRIC General Electric Corporation 13430 N. Black Canyon Highway Phoenix, Arizona International Business Machines Corporation 590 Madison Avenue New York 22, New York 1440 7044 7070 7072 Navember 1953 Published and copyrighted (©1963) by charles w. adams associates inc. 142 THE GREAT ROAD . BEDFORD . MASSACHUSETTS . Aros GI7 276-6050 # The purchase price usually is equal to from forty to fifty times the monthly rental, though in the case of manufacturers who prefer to sell their equipment or lease it through an agency, the fraction is as low as thirty. (Monthly rental information appears only in Sections I, IV and V.) Monthly Rental . . Capacity What a customer might pay for a system with basic peripheral equipment and, if available, magnetic tapes. Typical The first figure in parentheses is the cost, in thousands of dollars, of the minimum useful configuration. The second figure, where given, is the approximate cost of the maximum configuration likely to be ordered. Range Access Time First Delivery in Milliseconds Month and Year The date on which the first operating installation was or will be made. The effective speed of the central processor is measured roughly by some hard-to-determine average of the add time and cycle time, lightly salted with the number of instruction addresses. In addition, such features as instruction look-ahead, overlapped core memory banks, asynchronous memory and others referred to in the computer footnotes influence the over-all computing speed of a system. Peripheral Dev Processor Speed Cards speed of a system. Complete Add Time The time required to acquire and execute one fixed-in Microseconds point add instruction. Where add time is faster than or equal to cycle time in other than core memory Paper In - (machines, maximum optimization has been assumed. Printer Lines per Minute Off-line Equipmen | Storage Cycle Time
in Microseconds | For core storage, the total time to read and restore; for drum or other serial storage, the total time for one full revolution. | | |---------------------------------------|--|----| | Internal Storage | The internal storage capacity is measured by multi-
plying the number of words by the word length,
throwing in an extra factor of three to four if the words
are decimal or four to six if they are alphabetic. | | | Capacity in Words | The number of words of addressable internal storage available or the number of characters in character-addressable systems where the word size is shown as I. In both, K represents thousands. | | | Туре , | The type of memory, namely, core, drum or fast (the last indicating a scrial type area of fast access secondary storage). For example, "32K core" means that 32,000 words of magnetic core are available. | ٠. | | Logic | Each computer has its own instruction code and other logical specifications which affect the speed and ease of | | | Each compute | r has its own instruction code and other | |-----------------|--| | negicai specine | ations which affect the speed and ease of
Any unusual instruction code features | | are mentioned | in the computer footnotes. The "Other | | t catures" colu | mns also contain some information which asight into logic, | | The number and type of digits comprising one storage word (a = alphanumeric, six, seven or eight binary digits, depending on parity and addressing logic; d = decimal, four binary digits; b = binary, one binary | |---| | digit). | | Instr. Addresses | The number of separate storage addresses in a co-
ventional instruction. | n- | |------------------|---|----| | | | | | Tape | second but with a number of qualificati | character:
ons, inclu | s per
iding | |------------|---|--------------------------|----------------| | la at Char | The second of the second | | | | | _ | |---|--| | Thousands of Char-
acters per Second | The transfer rate between the computer and magnetic
tape, measured in six-bit characters (one alphabetic
one decimal, or six binary digits) unless otherwise noted | | Buffering | The letters in parenthenes indicate that and it | | uffering | The letters in parentheses indicate that combinations of reading magnetic tape (R), writing it (W), and com- | |----------|---| | | puting (C) can be performed simultaneously. (M) indicates that multiple simultaneous operations are possible. | | n Units
Ig | The largest number of units which can be attached and addressed by the computer. | to | |---------------|--|----| | _ | , in comparer. | | | Random Access File | In most instances this is considered as auxiliary storage which is addressable by groups of words rather than by individual words | |--------------------|---| |--------------------|---| | re
si
a
ti
a:
u | the maximum number of characters available (M presenting millions) in an external mass storage unit tech as tape loop, drum or disc. The type of characters and the characteristics of the storage unit are shown in the computer footnotes. Where the units attachable e virtually unlimited, the numbers shown are for one nit; otherwise they are for the total of all units which in be attached. | |--------------------------------|---| | | | | The time required to locate a single record, read-write head positioning and normal | inch | uding
tional | |---|------|-----------------| | access time (i. e., half the revolution time and disc storage). | for | drum | | vices | If other standard input-output devices are available in | n | |-------|---|---| | | addition to cards, paper tape and printers, they are referred to in the computer footnotes. | c | | per Minute
Out | The maximum number of cards which can be read or punched on-line by the computer in the time stated. | |-------------------|--| |-------------------|--| | The maximum number of characters which can be read or punched on-line by the computer in the time stated. | |---| | | | 8 | The maximum number of lines which can be printed
by the computer in the time stated. Unless otherwise
specified in the computer footnotes, each line is consid- | |---|---| | | ered to be 120 cohumns wide | | - | The state of s | |----
--| | nt | Reference is made, by name or model number, to a | | | in the state of model number, to a | | | smaller satellite computer which can be used to prepare | | | input to or process output from the main system. | | | "Same" means that on-line peripheral equipment can | | | the peripheral equipment can | | | be disconnected from and used independently of the | | | central computer | | ther Features | | |-------------------|---| | Program Interrupt | A check (V) indicates the availability of a special feature which, on the occurrence or completion of an external operation, causes a new program sequence to | | be initiated. | |--| | The number represents the maximum special registers whose contents may be added to the address portion of an instruction to form an effective instruction address. | | Indirect Addressing | A check (1) indicates the availability of a special feature which permits the use of the specified address | |---------------------|--| | | as the effective address for an instruction. | | Floating-point Arith. | This can be programmed in any system, of course, even though not a built-in feature. However, only where | |-----------------------|--| | | floating-point arithmetic is integral to the machine is this capability indicated by a check (1). | | Console Typewriter | O refers to a device capable of printing alphanumeric
characters at the console; I/O refers to a console key-
board capable of supplying data to the computer and | |--------------------|---| | | actuating the printer | | Software comprises standard programs used to compile | |---| | symbolic programs from statements in a problem- | | oriented language, assemble machine-language from | | symbolic programs, and aid in the operation and testing | | of programs written by the ultimate users of the com- | | puters. The best known are the compilers, especially | | those which accept procedural statements expressed in | | COBOL, ALGOL or FORTRAN source language. | | This information appears only in Sections I. IV and V. | | The month and/or the year in which such a compiler
became or will be available is shown in the computer
data and the name of the compiler indicated in the | |--| | footnotes. | | Business Compiler | The information is presented in the same format as that for algebraic compilers. | |-------------------|--| | | algebrate complicia. | Maximum Attachabl Word Sizo 0 Index Registers Software Approved For Releas 2000/05/31 : CIA-RDP83B00823B000100060011-9 | | T, a | £ 3 | | ii. | 09 173
0148 | rage
Words | | 85 | of Chz | Units | 11.5 | 2 € | erices
Inoute | Char-
econd | | unto | pmont | rrupt | | % 0.859 | ri
e | Jē, 'je | | D T | |---------------------|--|---|-------------------------------------|---|---------------------------------|---------------------------------------|------------------------|--|---|---|--|-------------------------|---------------------------|----------------------------|----------------------------|----------------------------------|--------------------|--------------------------------------|-----------------|------------------------|-------------------------|------------------------|----------------------------------|-----------------| | | Monthly R.
Typical
Bance | Pirut Deliver | Freezent and | 10
10
10
10
10
10
10
10
10
10
10
10
10
1 | Signage Cycle
in Microsecond | Internal Storage
Capacity in Words | Typo | Logic
Ford S.29
Instr. Addresses | L'Ignetic To | Etherns Des S
Buffering
Claximum Li | Attachable
Random Acress
Cantach | Access Time | Cards per El | Paper Tape
acters per S | i di | Lines per Minute | Off-line Equipment | Olivet Features
Program Interrupt | Index Registers | Indirect Addressing | Acating-point Anth | Console Typewiler | Software | on present | | IBM 7030
Syneych | \$160,00 | • | | | | 6- 26 2 K | core | 64b
1 | | 2 250 | | | 1000
250 | | 6 | 00 1 | 401 | | 16 | √ | √ | 1/0 | | | | | A. Co
outpu | mputer :
t under s | no longe
eparate (| r mark
control. | eted.
M | (), I
Acce | Instru
88 tim | ction
e var | look-al
ies from | read : | and ou | | had | core
ds, de | banks
pendi | allov
ng on | v in
file | crea
org | sed i | inter
atior | nal s | peed. | • |]. | | univa c larc | \$135.00
(135- |) | | - 1 | | 10-97K | | 12d
1 | 2!
M | RWC | 68 | | N | | P | q | R | | 99 | √ | | I/O | | | | | output | mputer i
t under ei
.), R. Al | ontrol of | a senar | ate
cor | C. I
nputer
Lequip | nstru
and i
ment | ction
it is po
(inclu | look-ab
ossible t
uding h | nead a
to add
tigh-sp | and over a second contract of the cont | erlap
ond c
im pi | ped
omp
inter | core
uting
') car | banks
unit.
be u | allov
L. | v in
Ul | crea
o to | sed i
24 di | inter
rums | nal s
of 2 | peed.
50,00 | 10 wo | rda | | CONTROL DATA | \$120,000 |) 6/6 | 4 .7 | , | .7 10 | 6-262 H c | ore | 60p | 30-83 | BWC | | 1 | 1000 | 350 | 100 | 0 | | √ | √ | · · | √ | | | | | IM 7634 | \$76,0% | Prelimin. | | | | | | manu | facture | r. Sy | ystem l | nas n | ot be | en fo | rmall | anne | oun | ced i | by C | DC. | | | | | | 11 3300 | (72-131) | 4/64
truction 1
'090 and | 2,8°
look ahe | ` 17500
ad and | interle | 32 K cc
186 K di
aved co | rum
ore m | 33b
1
emory | 15-1 70:
MRV
y banks | VC. | 2500
160
v incre |]
 | 250
00
inter | nal s | 150
nced | 146 | 60 | √
 | 7 , | √ \ | / | | 6/63 ^x
1 tape | | | | ments. | ercial T | IBM 1 | 301 die | | | | | | | | | | | | for u | p to | ten | tape | uni
RAI | ts or | perij | hera
Y C | l_c | | m 7084
Gdel 1 | \$70,000
(66-106) | 9/62 | 40 | 2
17500 | 1 | 32 K coi
186 K dri | ım. ` | 1 | 15-1 70 ¹²
MRW | | 220M | ı. 2 | 50 | | 150 | 140
146 | | √ | 7 1 | / v | / v _ | . 9 | /62× | 12, | | i i | has 56 r | ruction less (up to e
nillion Be
oble-preci | rignt) ar
CD char | e separa | ate inp | ut-out | out co
o five | ntrol:
units | s for up
). | , 10 16 | U.). | rmat
unit
Off-l | ion c
is or
line p | perip
Finti | heral | ds (I
equip | BM
mer | 1 ts.
60 1: | nm r | er n | , I | DA 4 | 12011 | dis | | 7080 | \$63,000
(60-100) | 6/60 | 4.4 | 2.2
17500 | ? | 32 K cor | θ 3 | NP : | ORTR
15-170 ^H | 80 | 220M | | OBO
50 | L, C | OMm
1509 | ercial | 114 | AN | slato | r. | | | /59× | | | | 11. For a
tape uni
are sepai | ate input | -output | II tap
acters pe | e units
er inch
s for un | to ten | e at 1
y) ope | mita | | K wh | 160
ile 729
0K, re | l(
IV (
speci | ape i | units | opera | 1460
e at 2 |)
22.5 | K aı | nd 62 | v
2.5K
)ata | . 72
chan | 29 V | and 7 | 729 | | 7 7000 | \$55,000 | O. O. 9/61 | ff-line pr | rinting
2 | 600 or | 1100
60K core | Ipm | per u | nit. | X. 3 | 1301 c
FORT | 10717 | '. | Υ, | |)L 0 | 1, (| COM | ers p
Imer | rcial | nit (u
TR/ | p to
ANola | five
ator | sto
(9/ | | , | (40-73)
(1. Add
direction
disc file. | 8 Or Write | mes a fi
e 170,000
Off-line j |) alphai | betic (c | or 340 (| 8
- 11.
200 n | I
The I | MRW(
IBM 73
ic) char | 0
340 (1
acter | 160
963 de
per se | liver
conc | 0
'y) H
1. (| 500

yperi
For 7 | | 1401
1460
Prive,
pe spe | , , | h ca | • |
lge lo | I/C
nad, v | will r | 61¤
eadi
1BN | n l | | THOL DAYA | \$55,000 | 4/63 | 2" | 1.5 | | 62K con | | | ыг.

30-83н 4 | | 720M | 1000 | ·
 | Y. 9 | 1000 | L '61
160A | | | | | | | ····· | | | | (40-75)
(1. Over
tape unit
netic tap | lapped coss. l | Data ch | s allow
annels (
atible. | (up to (| cight) a | ternal | lo
spec
parate | MRWC | i
i In | 100
structions | 250
ons s | tored | 10
two | per w | ord. | | cripl | heral | √
Mo
Lequ
DBO | iipmc | | /63 ^x
or IBI
K. | M | | MES
CRAFT | \$53,000
(35-) | /63 | 1,80 | 1.8 | | 31K core | 41 | | 30-83 | 128 | | 1500 |) 3 | 150 | 1000 | same | ·
 | | | лБО1
— | L.
I/C | | 63× | | | | () Instru
36b or 48
Note, Pre | | | | | | e bar | iko al | MRWC
low inc | | d inter | 300
nal
T. | вресс | 10
I.
24 d | F.
lecrem | Word | d sig | ze io
tera. | opt | lona | l; ma | ay be | | , 3
N | | eral
Cisich | \$50,000
(25-) | 1/60 | 16e | 5 | | 4K core | 8:
1 | | 50 10 | 023 | 200 M
90 | 200 | | | 1000 | - | - | 11 | | ~ | 1/0 |) | | | |)) | C Full o | yele time
signation | e; instru
of opera | ction lo
inds fro | ook-ahe
m one | ad and
to eigh | d | | MRWC
ed core
rs. | ban | su
ku allo | 10 0
w in | creas | 0
ed in | iterna | same
spec | d. | | g. \ | Varia | | | addr | eas: | | CO 2000 | \$50,000
(35-80) | 2/63 | .6c | 1.5 | 32-65 | K core | 48b | | | | | 2000 | 100 | | | 1000 | √ | 8 | <u> </u> | | I/O | /5 | 9x | /62 | | | (°. Instruc
two per we
forward ar
V. Double | id reversi | direction | ากต | | p to f | our d | ous, c
ocessor
isc fil | MRWCJ
overlappers, each
e units
C, For | ped constants of 5, | 242,88 | ontro
0 wo | rds c | incre
p to
ach | ased
32 tap
(41,94 | | | | | (;
Mag
per (| Instinetic | ructio
tape
are | ons st | or | | 16 1107 | \$45,000
(32-60) | 9/62 | 4¢ | 4 | 16-65 | K core | 3664 | | 120 16 | | 66Mr | Y.
600 | 400 | | 01.
00 SS | | | | | | | | | | | • | () Overlap
directly,
read in for- | ward and | reverse | diensei | film .n
ach in | A the | usage
n pe | allov | MRWC
v increa
use of | ased ii
virtua | nternal
ıl two- | 300 n
spec | 110
ed.
three | I
-addi | ′000 10
∴Al
essin | 050
ialf, th
struct | nird
ion | 100 | ixth | word | d ma | y be | -4:- 4 | 2330 | | | system with
(cight per a
svailable. | ubsysten
X. Al | um of 1! with n LGOL, I | o subsystantimus
FORTE | stems)
m of 1
RAN, | has a
5 subay
Y. | capac
ystem
COB(| ity of
s) has
OL '6 | 786,4.
a cap
1. | 32 we acity | of 66. | 4,5
06 m | 18,59
tillion | 2 BC | D cha
hanur | rarte
neric | rs,
cha | Eac
Fact | th F
ers. | AST | init (
'RAN
J. 1: | cight
ND d
50 cp | per
rum
m pu | su
un
inc | | * | | | • | | | 0/0 | | ٠, | CIÁ | -RI | | | | , | | | | , i | | | | | | • | 33 | | | | | | | | Ý | | | | | | | | | • | | | | |------------------------------|---|--|--|---|---|---|--|--|---|--|---|--|-----------------------------------|-------------------------------------|-----------------------|---------------------------------|-----------------------|--|-------------------------------| | | Monthly Rental
Typical
Ranga | Pirut Delivery
Couth and Veer | Processor Speed
Complete Add Time | Storage Cyclo Timo | Internal Storage
Capacity in Words
Tenn | Logic Word Size | Magnetic Tape Thousands of Char- acters per Second | Busering
Claximum Units
Attachable | Randora Access Pile
Capacity
Access Tima | in Killiscoonda Peripheral Devices Cards per Kinuta | Pepar Tapa Char- catars per Second in — Out | Prints
Lines per Minuto | Off-line Equipment | Other Peatures
Program Interrupt | Indax Registors | Indirect Addressing | Fleating-point Arith. | Console Typewriter Software | Business Compiler | | / PMILCO 2000
/ Medal 211 | \$35,000
(24-66)
C. Asy
read in
Fortran | iorward | 9
18, overla
and reve | | 8-32K core
banks allo
ons. L. | lo
w increa | 90
MRW
sed inter
nal drum | nal sr | 17
oced. | 100
G. 1 | 1000
60
(nstruct
(262,14 | 900
ions st
4 char | 1000
same
ored tracters) | √
wo p | 8
er w | ord. | √ I/
K. | Magne | · | | 1000
Houeamerr | and rev | erse dire | me for no
uded. | 2
ormal thre
H. Num
th program | 8-32 K core
e operand a
eric informa
nmed error | 3
addition,
ation can | MRW
F,
be trans | C
Worsferrec | 100
d size i | 250 ^N
is 12d i
3,000 c
it). | 110
ncludir
or 186,0
L. | 900
ng sign
100 ch/
Units c | sec.
of 12 I | b wit
K.
Bryan | Ma;
t dis | nary
gneti | c tape:
ontain | cimal ar
read in
45 milli | ithmetic
forward
on BCI | | CCMYROL DAYA | MATH
\$34,000
(19-35)
C. Ove | 1/60 l/apped | 63), Forti | fan type. 6.4 ks allow | 8-32K core | 48b
100 pccd. | ht progra
DBOL '61
30-83H
MRW | ims ca
1 (/63
96K
C
Instri | outions | 1300 ^h | 350
110 | 150
1000 | y.
160A | √ : | 6 | V , | OMA' | -
ما دەد ئ | 2/62 ^y | | REA COI | \$32,000
(24-68)
C. Asyr
modifica | 11/62
nchronou | Sompatible 5.7
6.70
6.70
s, overlap | le with IB 1.5 ^D 2.5 pped core F. Bina | 8-32 K core banks allow ry and deci | ts. N. 56b ^F 1-30 increase | 33-120u
MRWC
d internation | (with
d 250
48
d spec | cpm re | haracte
eaders
600
200
Debuded | 1000
300P | inch de
le.
1000
central | ensity) X. FO 301 proce | whi
ORT
√
√ | RAN
8T | 3M t. √ √ aster | y C | OBOL 622 | 61. 61. 62Y | | IGC2 7074 | \$29,300
(17-36) -
C. Para | 12/61
llel adde | 100 | 4 | 5-30 K core | 10dF
1
erial circ | 15-170 ¹¹
RWC ² | 40
M 70 | 280ML
160 | 500
250
F. W | n can b | 1509 | 1401
1460 | ata
Y. C
√
sign. | 99
EOBC | of 18
DL '6
√U v
H. Se | 0,000
1.
I/C | ch/sec.) /61 ² 1 7090 a | P. 100 | | PMILCO 2003
Medal 210 | \$28,000
(20-60)
C. Asyn | 600 or 1
BOL '61.
11/58
chronous | 100 lpm
15°
s overlapi | per
unit, | 8-32 K core | 48b
10 | ddressing
90
MRW
ed intern | limit
16 ^K
/C
al spe | 262 K ^L
17 | 2000
100 | 1000
60 | 900 | 1000
same | te ope
√
vo.ne | eration 8 - | ons.
√ | I/C | , FÓR
/59x
Magnet | 12/62 ^Y | | IBM 7044 | X. AL1
\$26,000
(20-55)
H. For t
N. IBM | AC, For
7/63
tape infor
1401 car | 5
rmation s
n be conr | 2.5
ee IBM 7
nected on- | 8-32 K core 090. J. line through | 36b
- 1
7904 dae
n input-c | 7.2-90#
MRWC
ta channe
output sy | 50
els av. | 280M
160
ailable | 250N
125
for ser | 500 | 600
11004 | 1401
1460 | s (26
√ | 3 v | 4 cha
√ √ | I/O | 9/63× | 10/63Y | | attrave aco | Y. COH
\$25,500
(18-)
C. This is
at a rate | 12/61
is add tin
of 175,00 | 4.80
12
ne for rep
0 ch/sec. | 6
Deat mode
K. N | 16-32K core only. G. | 30b
10
Half-wo | 25-125 ¹¹ MRWC rd logical | 192K
loper | 377ML
17
ations of | 600
150
can be | 400
110
perform | 600 S
700 I | 0 lpm
5580/90
1060
H. Nu | avaii
√
imeri | 7 - | orma | I/O | /61x | 10/62Y | | IBM 7070 | Each FA
X. NEL
\$24,000 | STRANI | unit (eig | nt per sut
mit (eight | per subsyst 5-10K core ^E | em with | um of 12
maximum | m of | ystems)
12 subs | has a
ystems | capacit | v of 78 | 36,432
ty of 6 | word
4.8 m | ls or
tillion | 3 03 | 2 160 1 | BCD cha
neric cha | rocters | | | per 25-di | sc modul
inc print | od plus si
e or 43 i
ing 600 | ign, J.
million fo | gits in field
MRWC p
ur-bit chara
pm per va
'61, | ossible w
seters sto | then four
ored in p | chan
ackec | nels us
1 (eigh | ied.
t-bit) f | L, IB
ormat, | M 130
Mod | 1 disc
cl 11 | file h
1301 | ias 2i
has | 8 mil
two | lion si
modu | mory av
x-bit cha
les or 50
rite oper | racters
discs. | | ACIAVC III | \$22,500
(16.6-30)
F. Word | 6/62
size is 66 | 8
d plus sig | 4
gn. G. | 8-32 K core | iga
⊢mav ne | MRWC | 38K
to fo | √L
ur data | 700
300
a word | 500°
110
s. H | l
N | S80/90
1050
neric i | | | n ca | I/O
n be t | | | | | tape unit | s availab | ole. L. | UNIVAC
Specifica | tape units of
1107, 490
utions unavi
AN, Y. | operat e a
and III.
ailabl e , | it 25K w
K, I
P. 15 | hile N
Magn | Model .
etic tai | IIIA u
pes rea | nits fur
d in for | ction a | at spec | ds of
verse | f 120
dire | K to | 133K
13. II | - P | ling on
patible | | 000 | metic insi
tapes read | tructions
d in forw
n BCD cl
ailable, | included,
ard and i
iaracters
P. | . H.
reverse dir
with incre
200 ch/se | 4-32K core perand add Numeric ections with the ments of 24 coreader av ACT, COB | 3
dition.
informa
progra
discs uj
ailable. | ition can
immed er
p to a mi
T. | be tr | 100
Vord siz
ansferr
orrection
of 9 | ze is 12
ed at 9
on (Ort
6 discs | 110
d inclu
6,000,
botroni | 900
ding si
133,000
ic coun
N. | 0 or 18
it) | 48b v
86,00
U
and | 0 ch,
Inits
650 | bina
/sec.
of 12
cpm | Bryan | it discs of and 10 | agnetic
contain | # CPARCHT For Releas 2000/05/31 : CIA-RDP83B00823R000100060011-9 | | Monthly Renal
Typical
Range | Ptrt Delivery
Clouth and Year | Processor Speed
Complete Add Time | Storage Cycle Time in Microseconds | Internal Storage
Capacity in Words | Туре | Logic
Vord Size
Instr. Addresses | Liagnetic Tapo Thousands of Characters per Second Buffering | Claximum Units
Attachable
Random Access File | Capacity
Access Time
in Muliseconds | Peripheral Denices
Cards per Minute
In — Out | Paper Tape Char-
acters per Second
In — Out | Printer
Lines per Eliputs | Off-line Equipment | Other Pealures
Program Interrupt | Indax Registers | Indirect Addressing | Floating-point Arith. | Console Typewriter | Software
Algebraic Campiler | Qusinges Comoiter | |------------------------|--|---|--------------------------------------|-------------------------------------|---------------------------------------|-------------------------|--|---|--|---|--|---|--------------------------------------|---------------------------|-------------------------------------|-----------------------|---------------------|-----------------------|---------------------------------------|---|-------------------| | RCA 3301 | \$21,000
(14-40)
C. Ac | d time as | sumes a f | 1.75
.25 | 5 200 | factE | la
2
E. | 30-120K
RWC | | 528M ^L
100 | 300 | 100 | | | √ | 3 | √ | | 1/0 | /64× | /64 | | | acters, | are avail | reverse di | irections. | L, | Unt | | 50 four-ch
at disc five
reading 51 | | | of fou | nicro-i
r mod | errite of | 22, 44 | ction
66 c | ı.
or 88 | mill | ion a | lagne
Iphar | tic tape | es re
e cha | | CONTROL DATA
6-20 | (7.3-35)
C. All | arithmeti | c operati | 6 | 4-32 H | core | 32b
10 | 120H
MRW | 500
(C | 62M ¹ .
90 | 800
250 | 500
100 | 1000
300
ngth _{, P} e | same | √
le | 63 | √ | - | | 2/62× 1 | , | | 1000 7010 | or 62.4 | million e | ight-bit c | character | 240,000 c | ch/sec. | Ind
OM 2 | ependent :
/62, FOR | TRAN | | comp | uung. | BOL, | Bryan | t dis | c has | cap | acity | of 15 | H. No
.6, 31.2 | 2, 48 | | IDM 7010 | \$18,500
(12-35) | 1/64 | 33° | 2.4 | 40-100 K | | 2 | 7.2-90H
MRC | # 1 | 60 | 800
250 | 500 | 6009 | 1401 | √ | 15 | - , | | | 2/61× | 6/62 | | | morma | d time as
ation see
1 disc sto
1pm. | IBM 709 | 0. L.
veseach v | Uptof
with a.ca | ive IR | of th | 'ariable-lei
01 disc un
irce million | ngth in
its ava
n chara | istruct
ilable
acters | ions o
with
are a | operat
28 or
Iso ava | e on va
56 mill
ailable, | ion al | ohan | umer | ic ch | narac | ters e | H. For
ach.
only p | Un' | | ourroughs
Esta | \$16,200
(13.5-50) | | 3 0 | 17000 | 4-32 K | core | 48b | 24-66
MRWC | | 60ML
20 | 800n
300 | 1000
100 | 700 | B280 | √ | _т | ۷ ۵ ۷ | / V I | /0 | /62× | /62 | | | has a c | n nunch s | designatio
48 millio | on of add
on charac
T. U | dresses.
Sters in r | N. j | Magn | ed. E.
letic tapes
.6 million
ative to Pr | Two o
read i
charac
ogram | n forv | vard : | and re | verse o
nits ma | hrectic
v be a | ns.
ttacł | L.
acd. | Eac | ch B⊲
L 20 | 472 S | ns to b
torage
a reade
at avai | Un | | OCA 501 | \$16,000 | 11/59 | 360° | 15 | 16-262K | | la ^y
2 | 33-66
RC, WC, or | 63K . | - | 600
200 | 1000
100P | 600 | 301B | _ | | / U | . (|) | - | /60 | | | C. Add
characte
R. Car
Y. CO | l time assi
er (tetrad
d equipm
BOL '60. | umes a fiv
parallel
ent and p | ve-charac
transfer.
printer m | ter field,
K
ay be us | ⊶ Mag
ed off-l | D.
metic
line. | RC, WC, or
With new
tapes read | speed-
d in for
J. Ind | pak fe
ward
irect a | ature
and r
addres | cverse
sing li | F.
directi
mited (| Variab
ons.
o scati | | | | | | r using
ch avai
e opera | | | IDM 7072 | \$15,800 | 6/62 | 12 | 6 | 5-30 K (| core | 10dF | 7.2-20н 2 | | | 60 | | | 1401 | | | / U _/ | | · · · · · · · · · · · · · · · · · · · | /60× 12 | | | | (14-32)
F. Wor
to scatte | d size is 1
cr-read an | 0d plus s
d gather- | ign.
-write ope | H. Low | ⁄-speed
X. | l
mag
FOI | RWC
netic tape
RTRAN. | only. | -
K
COB | IBI | —
M 733 | 0 tape | 1460 | • | | • | • | , | sing lir | | | national 304 | \$15,000
(12.5-19) | 11/59 | 600
120° | 60 | 2-4K c | | 10a
30 | KM₁ | 4K - | - 20 | 000
250 M | 1800
60 | 900 | same | | 10 – | | 1/0 | | | /61¥ | | | K. Mag | o-flow, si
netic tape | ngie-addr
s have no | o space b | uctions.
etween re | ccords. | Two | words pe
V. 100 cpr | r instr
n punc | uction
h avai | ı.
ilable. | J In
Y | proces:
COB | ing ir | activ
1. | e re | cord | , R1 | ₩C i | s achie | eved | | Zeneral
Lectric 210 | \$14,000
(10.5-36) | 11/60 | 64 | 32 | 4-8K c | | 6d#
10 | 30 1
RWC | _ | - 2 | 500 M | 200 | 10009 | | - | 1 - | | 1/0 |) | | /61¥ | | | Two 120 | l size is 6d
00 MICR
ised off-ljr | -documer | n. G.
ntpermi
CAP. | Double-
inute sor | precisio
ter-read | on ari
dera c | thmetic in
an be mul | structio
Itiplexe | ons inc
d. | cludec
Q. F | l.
Printer | N. 400
can pi | cpm r
int m | eade.
agne | r and
tically | 100
y-enc | cpm
oded | punc
cha | h availa
ractero | able
and | | BM 7040 | \$14,000^
(9-36) | 4/63 | 16 | 8 | 4-32 K co | | 6b
1 | 7.2-90 ^H 50
MRWC ^J | 280 | | 50
25 | 500 | 600 | 1401 - | √ | 3 √ | 4 | I/C | 9/ | 63× 10/ | 63¥ | | | A. Ident
available
X. FOR | ior sepai | rate inpu | with exce
it-output
COBOL | control - | interna
of up | l ope
to ter | rating spec
n peripher | | u r | | e info | 11009
mation
Up (| see II | BM 7
lof | 7090.
33 00 | J
lpm | . 709
pri | 04 dat | ta chan
availa | incla
ible. | | DE2 1410 | \$13,500
(6-32) | 11/61 | 88c | 4.5 | 10-80 K co | | la ^F : | 7.2-90 ^H 20 | 280
160 | | М | 500 | | 1401 | / 1 | 5 — | .— | I/C |) 12/ | 61× 12/ | 61¥ | | | C. Add informati
ten 1311
Q. Num | on see IB.
disc
stora | M 7090.
ave drive | L.
n. each i | Up to five | F.
ve IBM | Vai
1130
of t | riable-leng
l disc unit
hree milli
le FORT. | th instr
s availa
on cha | uction
able w
racter | ns ope
ith 28
s also | rate o | millio
able. | 61. 1 . | gth d
anun | neric | char | acter | s cac | For t
h. Up
availa | o to | | oneamerr
Oueamerr | \$14,000
(10-22) | 12/63 | 78º | 6.5 ^D | 4-16K cor | e 12 | d ^r | 32-89" 16
RW | 100N
110 | 91. 8(
25 | ן א ⁰⁰ 0 | 000
10 | 900 sa | | | | 4 | I/O | /(| 33× /6 |
;3¥ | | | C. Comp
sign or 48
ments of 2
Y. COBC | b. r
25 million | Nume | eric infor | mation c | an be t | transf | D. Cy
erred at ra
reader a | ic or 4 | 8.000. | . 96.00 |)() or 1 | 33 000 | ch/sc | ٥. | 1 | E | Bryan | t disc | a 12d p
s in inc
tran ty | rre- | | neral
Ectric 239 | \$10,900
(3-26) | | 12 | 6 | 4-16K cor | 1 | G | 15-41 56
MRWC | 199 | 9 ^L 150 | 0 1 | 10 | 900 s a | | | jт _ | | I/O | -, - | 2 ^x 1/6 | | | | G. Binary
Each mod
minute so
option. | rter-reade | rs availa | o million
ble. I | characte | ers.
h <i>isec</i> r | N. 4
reader | uctions inc
00 cpm re
r available
WIZ. F | ader a | iid 10 | ree in | dex r | egisters | able. | I wo | 5 120
Ada | 0 M
ditio | ICR
nal (| doco | availab
ment-p
ailable | | | i | \$10,000
(8.7-20) | 8/61 | 9.30 | 6,4 | 8-32 K core | 24b |) 1 | 5.83H S&K | | 130 | ON 3 | 50 | OL '61 | as pa
0A √ | 6 | Ø£C | -
- | I,
I/O | | | | | | C. Overla
information | pped core
n see CD(| memory
C 1604. | y banks a
K. M | allow inco
agnetic t | reased
apec co | interi
ompa | nal speed.
tible with | H.
IBM ta | CDC
ape ur | Moonits. | del 60 | | unit o
d 250 | r IBi
cpm | M 72
read | 9 ta
ero a | pe u
vaila | nits.
ble. | For ta | ıpe | | | Peri Delicary Peri Delicary Complete dul Time Sterric Cett Time In Horestor Strat Complete dul Time In Horestor Strat Typ. Logi Und Sto Institute de Caracity in Car | Dusions Crayla | |------------------------------------|--|--| | vousamerr
Nousamerr | | ze is 12c
ant disc | | SCIENTIFIC
DATA
SDS 9300 | \$9,000 12/63 1.75 1.75° 4.32 K core 24b 16.83 H 64 800 N 300 10009 910 V 3 V I/O 3/64° (6.6-15) 8300 16.96 K drum 1 MRWC 250 60 C. Overlapped core memory banks allow increased internal speed. H. Magnetic tapes are IBM compatible. N. 100 cpr and 100 cpr punch available. Q. 300 lpm printer available. Graph plotters and analog conversion equipment a X. FORTRAN II. | n reade | | MATIONAL 315 | \$8,500 1/62 48° 6 2-40K core 2aF 24-60 16 88ML 2000N 1000 680°Q — √ 32 — I/O 8/63° (3.8-30) C. Add time assumes a five- or six-character field. F. Decimal format allows 3d word size. L. Magnetically-encoded cards on (CRAM) permit random and sequential file processing. Sixteen units with 5.5 million alphanumeric or 8.3 million BCD character N. MICR documents can be read at 750 per minute. Up to four similar peripheral devices may be attached to each peripheral I/O or Q. Numeric information only printed at 1750 lpm. X. FORTRAN II. Y. COBOL '61, 10/62 tape, 5/63 CRAM. | 5/63Y
a drum
ers each. | | IDM 1460 | 18,100 ^A 10/63 108° 6 8-16K core 1a ^F 7.2-90 6 15M ^L 800 ^N 500 1100 ^Q — 3 — 1/O 12/6F (3.5-16) A. Typical rental for tape system. Variable-length data fields. C. Add time assumes a five-character field. C. Add time assumes a five-character field. L. IBM 1311 disc drives, featuring interchangeable disc packs, of three million character | erate or | | DIGITAL
EQUIPMENT
PDP-3 | N. Optical and MICR readers available. Q. 600 lpm printer also available. X. FORTRAN. Y. COBOL '61. \$8,000 | inay be | | UNIVAC
SS 80/29
Clodel I, II | size is 10d plus sign. G. Last part of instruction word indicates address of next instruction. memory and magnetic tape, it is possible to achieve RWC with use of a second synchronizer. J. In Model II, which will he memory and magnetic tape, it is possible to achieve RWC with use of a second synchronizer. L. Up to ten Randex drum uses the memory and magnetic tape, it is possible to achieve RWC with use of a second synchronizer. | 6 /61¥ | | URIVA C 1050 | \$7,250 ^A 9/63 117° 4.5 8-32 K core la 22-133 ^H 2 ^K — 1000 — 700 ^A — V 7 — — — (5.7-9.6) 1 RC, WC — 300 — | Numerio | | PHILGO 1000 | \$7,010 6/63 39° 3.5° 8.32 K core 1a ^F 16-240 32 K — 2000 N 1000 900 4 — 8 4 — 1/O — (6-15) 1-4 RC, WC or RW — 100 60 C. Add time assumes a five-character field D. Assuchronous core banks allow increased internal appeal. F. Four-character | /64 ^y
instruction 200 | | GENERAL
ELECTRIC 225 | | 400 cpn | | BURROUGHS
0260, 8270, 0200 | \$6,500\textsup 7/62 777\textsup 10 | bacity o | | IBM 1401 | \$6,500\cdot | eter field
erlapped
0 millior
vailable
vailable
2'61. | | MATIONAL
818-100 | \$6,000 11/64 48° 6 2.80K core 2aF 12 8 10?MF 400N 600 650 — $\sqrt{32}$ — 1/O 11/64 (2.2-15) C. Add time assumes a five- or six-character field. F. Decimal format allows 3d word size. L. Magnetically-encode on a drum (cram) permit random and sequential file processing. Sixteen units with 6.4 million alphanumeric or 9.5 million characters. N. Up to four optical or MICR sorter readers may be attached. X. FORTRAN II. Y. COBOL '61. | led card | | GENERAL
ELECTRIC 219 | \$5,500 /63 72 36 4-8K core 20b 15 8 75M ^L 1500 ^N 1000 ^P 450 same √ 95 ^L - √ ○ 1/62 (2.5-10) 1 MRWC 199 300 ^N 110 | | | | prove | u Fo | FRE | 1697 | | 2000 | # U | 3/3 | | CIA | /- E | DF | جن | | סטיי | بد <u>ب</u>
1 | ŽŲ. | ייינ | vv | υb | VI. | Щ. | <u>-9</u> | | | |---|---|---|--------------------------------------|---|---------------------------------------|--
--|---|----------------------------------|---|---------------------------------------|---|--|------------------------------|-----------------------------|---------------------------------|----------------------|---------------------|-------------------------|---------------------|--------------------------------|-----------------------|--------------------------------------|-------------------------------|-----------------------| | 1. | Monthly Ronal
Typical
Range | First Delivery
Month and Year | Presessor Speed Complete Add Time | in Licrosconds | Sbrago Cyclo Time
in Clicroseconds | Interval Storage
Capacity in Words | Тура | Logic
Uard Sizo | Magnetic Tape | I housands of Char-
acters per Second
Buffering | Claximum Units
Attachable | Random Access Pilo
Capacity
Access Time | in Milliseconds Peripheral Devices Cards per Monte | la — Out | acters per Second | Printer
Lines per Minute | Off. Sing Foundation | Other Postures | lodox Remisters | Indirect Addressing | Floating-point Arith. | Censolo Typounitor | Software
Alrebraic Commiss | | Business Compiler | | RCA 301 | and reve | 2/61
time assums in placerse directions
lable; or 1 MICR
354 and | rtions.
up to si | n eight
ider cir
L
x recor
reader | rcuits
Up
rd files
opera | to two | ld follows the second s | 2
or mod
303 thr
file Br
on cha
docurr | RC,
Irls 35
ough
yant u | WC, 0
4 and
305,
units,
as each | or RW
d 355
, each
h ais | F. V | ariabl
ur mo
availa | 0
Ic-lei
odule
ble. | s of | 200-cl
data f
22, 44 | , 66 c | ter p
K
or 88 | ositio:
Ma
millio | gnet
on al | ole i
ic ta
lpha
0 cp | pes r
num
in pi | l for ar | ithm
forw
arac
vaila | ietio
varo
ters | | DURROUGHS
D250 | \$4,200A
(2.8-6.7)
A. Gene
a five-cl
180 cpm | 9/61
crally use
naracter
n. MIC | 7770
ed in ba
field,
R docu | nking a | 10
applicanstruc
read a | 9.6K (ations, tion cat 1560 | the s | 1a ¹
3
ystem
up to
minute | includ
12 c | les ce
harai
Q. 2 | entral
eters
14 lp | proce | 10:
ssor, .
ath. | ledg | 100
er pre
N. M | 214°
ocessor
agnet
ms. | r and | card | read | rr.
ledge | - (| Z. Ad | d time | assu
reac | mes | | CONTROL DATA
160A | \$4,000
(2.2-9.5)
G. Instr
IBM 72
available | 7/61
uctions
9 tape u
s. X. | 12.8 use no- nits. FORT | address
L. Bu | 6.4
direct | 8-32K (
ct-addre
version | C89. | indired | 15-
RC, | 83H
WC or | 60ν
γ ΚΜη | _ | 1300
100 |) N
) | 350
110 | 150
1000 | addre:
npatí | ss mo | 0
odes.
N | √
- 100 | —
Н. | I/O
CDC
d 25 | /62 ^x
Mode
0 cpm | | -
6 or
dere | | DIGITAL
EQUIPMENT
POP-1 | \$3,600A
(2.9-15)
A. No re
speed in
lpm prin | 11/60
ental pri
put-outp
iter avail | 10
ces anno
ut chan
able. | ounced | l. Pri | 4-65K o
6-131K o
ces der
connect
tube di | ived | 18b
1
from
K
y (with | purcha | MRWC
asc _. pi | rice a | and do | 800
100
not
IBM
plottin | inclu | 400
63
ide c
patib | 10009
ost of
le. | magn | etic | tape i | units | r av | J. t
ailab | 12/61x
Jp to 1
le. | Q. : | 300 | | Packard dell
Pagado | \$3,500
C. Add of
size is ex-
indirect a | 9/63
time vari | 10
able fro | m one | 5
1
to elev | 4-28K a
.2-4K b
en mic | oree
lax
rose | 24b ^p
00
conds | 42-6 | S2
MRWC
E. Bia | C
ax m | mory | 800
250
is not | n-der | 500
110
struct | 1000 | r stor | √ | T | lo co | ,
√ | I/O
anda | /63× | W | | | CARD VERSION
OF SMALL TAPE
VSTEMS | \$4,000
\$2,000
Many of
301, are | the smal | l tape s
d only a | ystems
as punc | listed
thed-ca | above,
ard syst | e.g., | Hone | ywell ent at | 400,
subst | Univ | ac SS | 80/90
wer pi |), Pi | ilco | 1000, | Gene | ral E | lectri | 225 | 5, IH | M 1 | 101 an | d R | | | DVANCED
CIENTIFIC
SI 2100 | \$3.000 ^A
(2.5-8)
A. Rents
and 100 c | 12/63
al price o
cpm pun | 4
does not
ch avai | includ
lable, | le cost | 4-32 K co
of mag
2- 200 | zneti | l
c tape | units | MRWC | ĸ. | —
—
Magr | 800 N
250
netic t | 2500 | 00
10
are | 4009
IBM dipmen | comp | √
atible | | √ -
N. | 200 | (/O
), 100 | /64x
) cpm i | read | ers | | OMPUTER
UNTROL
DP-24 | \$2,750A A. Renta addressab mation of FORTRA | ily printe | ·output | chann | cost o | 4-32K co | etic | 24b
1 | 15-4 | MRWC
B. | jβ ^κ
· D _E l |
ivered | 400
100
in 19 | 3(
bit o | 00
60
confi | 6000
guratic | - on in | √
May | 17
1961, | √ 1 | / 1
J. | /O
Up to
Q: N | /63x
o 32 pro
umeric
ugmen | ograi | m- | | CIENTIFIC
ATA
OS 920 | \$2,690
(2.5-6)
A. Renta
analog co | 9/62
price d | 16
loes not
equipn | 8300
includ-
ent ar | 1 | 2-16K co
6-96K di
of mag
lable. | | 24b
1
tape | 3.5-4
Mi
units,
RTRA | IH 3
RWC | 32
H. _N | | 200 ^N
—
tic tap | | 00
60
nits a | 300
re IBI | 910
M cor | | | | | | 12/62× | | | | HOMPSON
AMO
OOLDRIDGE
IW 230 | \$2,680
(2-6.5)
F. Instruc
operations | 6/63
ctions sto
facilitat | 12
ored two
ed by n | 6
per w | 65
Vord v | 8-32K co
-262K dr
when us
nming | um | the no | Mi
addri | RWC
css m | node | -
-
RAN | 200
100
r, u. | | 00
60
rect | 300
addre | ssing, | | | | | | 9/63 ^x
-word | -
Jeng | th | | VANCED
IENTIFIC
I 210 | \$2,600^
(2.3-7.5)
A. Rental
available,
recognize | • • • | x-y piot | ter ava | cost o | 4-8K co
of magn
C
RAN, I | etic | tape u | mrint. | K | | –
–
agneti
le. | 800 N
250
c tape
S. L | s ar | .0
e IBI | 0000
M com | natit | ale. | N | ۸ | | | 4/62 ^x
pment
to ign | buff
ore | er
or | | Tonetics
Comp II | 82,500A
(2.5-4.5)
A. Price of
instruction | 11/58
loes not
s include | 1080
include | 9000
950
cost o
P. 400 | of mag | 4K dis
16 fas
gnetic t
c reade | st
and | 40by
Ia
units,
id 20 c | F | one | truct | ions s | 20
15
tored | 60
Listwo | | word | | | 0 - | - √ | t ar | ıd ah | 5/60x
solute | valu | ie
 | | AIONAF 310 | \$2,450A
(1.6-6.5)
A. Price d
read at 750 | 4/61 | 12,8
include | , 6. 4 |)
magn | 4K con | e
De ur | 12b | A ver | | | | | 350 | JP (| 200 | - | | 0 , | / - | Ĭ | /0 | ortran
—
R docu | | - | | | | | | | | | | 1 | | | | ٠ | | | | | | | | | |-----------------------------|--|------------------------------------|----------------------|---|--|---------------------------|---|--|---|--|--|--------------------------------------|--------------------------------|---------------------|-------------------------------------|------------------|-------------------------|--------------------------|--------------------------------|-----------------------| | | Morting Rectal
Typical
Range | First Delisery
Clouth and Year | Presence Spend | io Lieroscocia
Sbrage Cyclo Himo
io Dieroscocia | Internal
Storage
Capacity in Words | 7,723 | Legie
Clord Sim
Instr. Addresses | Magnetic Tape
Thousands of Char-
acters per Second | Bufaring
Laximum Units
Attachable | Randors Access 1983
Capacity
Access Time -
in Cillisconds | Peripheral Devices
Cards per Cinute | Paper Tope Cher-
ecters per Scood | Prints
Lines per Clinuto | Off-line Equipment | Olica Decimina
Program laterress | टिवेज विद्यंत्री | Indirect Addressing | County Typeshill | Software
Algebreit Compiler | Business Countily | |)
IBC3 1440 | §1,935 | 11/63 | 2000 | 11.1 | 4-16K | | 10 ^P | _ | | 15M | L 400 | 500 | 2409 | | | 3 | | | ···· | | | | disc driv | time ass
ves, featu
column p | iring int | five-charac
erchangeat
. Q. P. | ter field.
ole disc p
rinter spe | acks, c | of three | able-len
e millior
120 to (| ı char | acters e | 91
ns ope
ach. | rate on | variab
Punch s | le-leng
peed i | gth di
s vari | ata fi
iable | elds.
(91 t o | L.
360 c | Up to i
pm), de | five 13
pendi | | GENERAL
PRECISION | \$1,900
(1.8-4.5) | 11/60 | 1000 | 17000
10000 | 8K
128 | drum ^E
fast | 32b | | | | | 500F
300F | | | _ | 1 | | - I/C |) /61 ³ | · _ | | 1PC 4000 | last half | of the ir | nstructio | ess with two
on word inc
seconds per | dicates th | ie addi | ress of | erating i
the nex
sec read | t instr | uction, | Repo | eat com | mand a | allows | up t | o 127 | s acce
repe
[RA] | titions | ige.
of certa | G, T
ain ba | | IATIONAL 300 | \$1,850
(1.4-1.9)
N. Marr | , | 11300 | 1200
I stores up | 200 | | 12d
4 | - | - | —————————————————————————————————————— | 15 ^N
15 | 400
17 | 1109 | | _ | 0 | | · I/C | | | | | printer a | illows an | ıy colun | mar arrang | gement o | n form | as and | reports. | · | . Prini | | | n appe | ars on | Iron | torc | ard, | Q. | Progra | mmab | | CIENTIFIC
DATA
DS 910 | | | | 8
8300
et include c | | drum
agneti | | | C
H, |
Magno | 200N
—
etic tap | 60 | 300
are Il |
3M ca | √
impa | l
tible. | ۸ - | |) 12/62×
ph plott | | | BM 1620 . | \$1,600 | 10/60 | 560° | ment are a | 20-601 | | 1d# | RTRAN | | 8WR | 250 | 150 | 2404 | | | 0 | 4 1 | I/C | 12/60× | | | ·
· | (1.6-5)
C. A 30
assumes
million c | a five-ch | iaracter | | is used ir
F. V.
inter spe | ariable | :-word | length. | its in | 250
Model
K . t | 125
1 only
Jp to 1 | . 15
. Mod | 11 disc | atures
drives | nori
with | mal a | dder
rehar | circui | • | dd tin | | UTONETICS
ECOMP III | \$1,500
(1.4-3) | 6/61 | 1080 | 9300
1750 | 4 K | disc
fast | 40b
10 | | | _ | 20
15 | 300P
150P | _ | _ | _ | 1 - | - √ | I/C | /62× | | | · | G. Instr
type). | uctions s | stored tw | vo per wore | d. P. | 10 ch/ | sec rea | ader and | 1 10 с | h/sec p | unch s | tandare | l, plotte | er ava | ailabl | c. | X . 4 | AUTO | COM (| Fortra | | ONTROL DATA | \$1,500^
(1.5-3)
A. Price | 7/60
does no | 12.8 | 6.4
e cost of m | | core | 12b
10 | 15-83 ¹¹
none
G. 1r | 1 | | 1300N
100 | 350
110 | 150
1000
direct-: | | | 0
direct | √ - | · I/O | /62× | | | | and rela-
with con | tive-addi | ress moo | les. H
Magnetic (| L'CDC I | Model | 606 p | : IBM | 729 ta | ape uni
100 an | ts. | J. N | Aagneti | c tape | e stai | t-sto | o tim | | be ove | | | NIVAC 1004 | \$1,500A
(1.1-1.9) | 9/63 | 112 | 8 | 961 3 | oreE | 10 | + | | | 300 N
200 | | 4009 | | | 0 - | | | - | ٠ | | • | | tes (up t | o 400 c | choice of e
pm) possib
Q. 400 lpm | le when | readin | ig less | than fu | ll car | d. Coc | le ima | ge feat | d serves
ure, per
anumer | rniittii | ng do | ouble | use o | of c act | card (| High
colum
orm. | | ACHARD BELL
B 250 | \$1,200^
(1.2-6) | 12/60 | 24 | 3070
12 | 2.3-16K | | 22b | 2
nono | 6 | _ | 400 | 300°
110° | 500 | | - | 1 - | | I/O | 5/62 | | | D 434 | A. Price | does no
punch | t includ
standare | le cost of n | nagnetic | tape i | anits. | E. I | ntern | al storag | ge is m
availa | agneto | strictive | dela | y line | 9. | P. 2 | 0 ch/ | sec read | ter an | | IGITAL
QUIPMENT
DP-4 | \$1,050^
(1-) | 7/62 | 16 | 8 | 4-32 K (| drum | 18b
1 | 15-60
MRW | | | 800 N
100 | 300
63 | 10009 | | . 4 | 0 - | <i>/</i> – | I/O | • | | | | | ccording
Q. | to word | ounced. F
I times) ree
m printer a | duces dri | un acc | ess tin | ne. | • | C. Mag | netic (| tapes a | e IBM | comp | aitibl | c. | | N. 2 | itions oi
00 cpm
nent av | reade | | ENERAL
RECISION | \$750
(.5-1.5) | 3/63 | 7350 | 51000 | | disc | 32b | | - | | n | 60
60 | - | | <u></u> | 0 - | | I/O | 3/63× | | | GP 21 | | | | e available | | | | K. ALC | OL 8 | ubset. | | | iminar | y info | rmati | on ne | ot ver | ified b | y publis | sher. | | IONROBOT XI | reader ar | nd punct | h, and a | 12000
o per word
16-key nur | meric ke | Facil | 32 b
I ^o
ities fo
I, are a | r three
available |
input
A | and the | 15 ^N
15
ee out
ic care | 20°
20
put des
Linput |
rices, in
-output |
cludir
devic | ng tel | etype | write | I/O
r, edge
ole. E | | ed car
M-size | | IGITAL | \$625 | 10/63 | 18 | 74 comput
6 | 1-4K c | | 12b | | | | <u>-</u> | 300r | q | | √ | 0 | v — | I/O | | | | QUIPMENT
DP-5 | P. 10 cps | reader | and pur | nch standar | ·d. Q | . Catl | ı
hode ra | ay displ | ay sco | pe, ligh | t pen, | 63
and an | alog co | nversi | ion e | quipr | nent a | availat | ole. | | | -W 15H | \$355
(.356) | 2/63 | 650 | 16700 | 4 K d | Irum | 24b | | | | 45N
85N | 60P | q | | _ | 0r - | | 1/0 | | | | | N. Facil | | | | | | 4 | | | | | | | | | | | | | |